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Optimal prediction methods compensate for a lack of resolution in the numerical
solution of time-dependent differential equations through the use of prior statistical
information. We present a new derivation of the basic methodology, show that field-
theoretical perturbation theory provides a useful device for dealing with quasi-linear
problems, and provide a nonlinear example that illuminates the difference between
a pseudo-spectral method and an optimal prediction method with Fourier kernels.
Along the way, we explain the differences and similarities between optimal pre-
diction, the representer method in data assimilation, and duality methods for finding
weak solutions. We also discuss the conditions under which a simple implementation
of the optimal prediction method can be expected to perform well.c© 2000 Academic Press

Key Words:optimal prediction; underresolution; perturbation methods; regression;
nonlinear Schr¨odinger; pseudo-spectral methods.

CONTENTS

1. Introduction.
2. Weak solutions, regression, and prediction.
3. Regression for Gaussian variables.
4. An overview of invariant measures and Hamiltonian formalisms.
5. An example of conditional expectations with a non-Gaussian prior.
6. A perturbative treatment of a nonlinear Schrödinger equation.
7. Pseudo-spectral optimal prediction for a model nonlinear problem.
8. Conclusions.

1 This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract DE-AC03-76-SF00098, and in part by the National Science
Foundation under Grant DMS94-14631.

267

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



268 CHORIN, KUPFERMAN, AND LEVY

1. INTRODUCTION

We consider a Cauchy problem

{
ut = R(x, u, ux, uxx, . . .),

u(x, 0) = u0(x),
(1)

whereR(x, u, ux . . .) is a (generally nonlinear) function ofu= u(x, t), of its spatial deriva-
tives, and of the independent variablex, in any number of dimensions; subscripts denote
differentiation. We assume that we cannot afford to use enough computational elements
(for example, mesh points) to resolve the problem adequately, or that we do not wish to
use many computational elements because we are only interested in some of the features
of the solutions and it seems to be wasteful to compute all the details. We also assume that
we have some prior statistical information about the distribution of possible solutions. The
question we address is how the prior statistics can be used to obviate the need for resolution.
In contrast to problems that arise in some applications, especially in geophysics [1], we as-
sume that the equations we are solving are fully known, and that the data are knowable in
principle, even if we may not be able or willing to store them all in a computer’s memory.

In the present paper we assume that our statistical information consists of an invariant
measureµ on the space of solutions; i.e., we assume that the initial data are sampled from a
probability distribution on the space of data, and that, in principle, if one takes one instance
of initial data after the other and computes the solutions produced by (1) at any later time
t , then the set of solutions obtained at that later timet (viewed as functions of the spatial
variables) has the same probability distribution as the set of initial data. We assume further
that this probability distribution is explicitly known. In Section 4 below we give an example
where these assumptions are satisfied and provide more precise definitions. Our present
assumptions may be unnecessarily strong for some practical problems, but they simplify
the exposition and it is often easy to weaken them. We shall call the invariant measure the
prior measure; thus the prior measure is the distribution of the data before anything has been
specified about a particular problem. In Hamiltonian systems a natural prior measure is the
canonical measure induced by the HamiltonianH, i.e., a measure defined by the probability
density

f (u) = Z−1e−H(u)/T ,

whereZ is a normalization constant and the parameterT , which determines the variance of
the density, is known as the “temperature.” We do not assume that the differential equation
(1) admits a unique invariant measure; in cases of non-uniqueness the right choice of measure
is part of the formulation of the problem. We shall apply our methods to Hamiltonian partial
differential equations and expect that standard physically motivated assumptions about the
ergodicity of Hamiltonian systems apply, see, e.g., [15]; we stay away from integrable
systems where these assumptions do not apply.

We further assume that all we know, or care to know, at timet = 0, is a small set of data.
In the present paper we choose these data to be of the form

(gα, u) =
∫

gα(x)u(x, 0) dx = Vα, α = 1, . . . , N, (2)
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where thegα = gα(x)are suitably chosen kernels (the choice of kernelsgα is at our disposal).
The question we are asking can now be rephrased as follows: How do we best predict the
future using onlyN variables defined as in (2), given the prior measureµ?

At time t = 0 one can, at least in principle, find the mean solution conditioned by the data
(2), for every pointx, i.e., at eachx one can average over all those functions in the support
of the invariant measure that also satisfy the conditions (2) and find the meanv of u given
the valuesVα, α= 1, . . . , N; symbolically,

v(x) = E[u(x) | V1, . . . ,VN ], (3)

whereE[·] denotes an expectation value. This is a regression problem, which can be solved
by standard tools ([21], see also below). If one is given only the information contained in
(2), this regression is the right substitute for a more detailed knowledge of the data. To
perform the regression at a later timet we need appropriate conditions at that later time,
which should encode the later effect of the initial data (2). The problem now at hand is how
to find these conditions and how to do it efficiently, in linear and in nonlinear problems.

For readers conversant with Bayesian statistics, we note that the measureµ is a prior
measure in the Bayesian sense and that the effect of the partial data is to produce a posterior
measure. The invariant measure constitutes prior information in the sense that, as we shall
see, everything that is not conditioned by the partial data obeys the prior distribution.

We have already explained our basic approach in [4–6]; rigorous results can be found in
[12]. In the present paper we explain it in a different way which we hope is more transparent;
the suggestion that a weak formulation is the right starting point is due to Gottlieb [11].
The paper has several goals: to explain what constitutes the novelty of our approach, to
show how it meshes with field-theoretical perturbation methods, to give a simple, explicit,
nonlinear example of the ways in which the basic algorithm differs from, and is superior to,
a numerical method that uses the information in the initial data without taking advantage of
the prior statistics, and to discuss the domain of applicability of the current implementation
of the basic ideas. Our examples are of Schr¨odinger type.

Other work along somewhat analogous lines includes Scotti and Meneveau [24], where a
“fractal” interpolation can be viewed as an analog of sampling a measure, and a stochastic
construction by Vaillant [25].

A comment on notations: The notation in Eq. (3) is clear but cumbersome. A shorter
version isv= E[u | V ]. We shall also use the simpler but less transparent physicists’ no-
tations〈u〉 for E[u] and 〈u〉V for E[u | V ]. Both notations〈u〉V , E[u | V ] are of course
shorthands for〈u〉Vα,gα , etc., since the conditioning (2) depends on the kernels as well as on
the right-hand sides.

The paper is organized as follows. In Section 2 we present an overview of optimal
prediction. In Sections 3, 4, we present some needed background material on regression
and invariant measures. In Sections 5, 6 we explain how perturbation theory can be used
to implement optimal prediction in nonlinear problems and provide examples of success
and failure in problems with sparse data. In Section 7 we provide a detailed analysis of a
problem in which perturbation theory is carried only to zeroth order (but with a ground state
that our previous work shows to be optimal), and in which the kernels are trigonometric
functions. These simplifications yield results that are particularly transparent. Conclusions
are drawn in a final section.
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2. WEAK SOLUTIONS, REGRESSION, AND PREDICTION

We start with well-known considerations about weak solutions of linear equations; they
lead naturally to an algorithm for solving underresolved linear equations, which will be
useful below, in particular because we shall be able to present our proposals by way of a
contrast. Consider the equation

ut = Lu, (4)

where L is a linear operator. Multiply (4) by a smooth test functiong; for simplicity
assume that the boundary conditions onu are periodic, and thusg can be also assumed
periodic. Integration over a periodic domain inx and betweent = 0 andt = τ , followed by
an integration by parts, results in∫ τ

t=0

∫
x
(gt + L†g)u dx dt+ (u(τ ), g(τ ))− (u(0), g(0)) = 0, (5)

where(u(t), g(t)) denotes
∫

u(x, t)g(x, t) dx andL† is the adjoint ofL. A weak solution of
(4) is a functionu(x, t) that satisfies (5) for all test functionsg (see, e.g., [19]). In particular,
if the test functionsgα satisfy the adjoint equation

∂gα
∂t
+ L†gα = 0, α = 1, . . . , N, (6)

thenu is a weak solution of (4) provided(u, gα) is a constant independent oft for eachα.
This observation produces a possible numerical method for solving (4). One can construct a
collection of functionsgα that satisfy the adjoint equation (6), find the numerical valuesVα
of the inner products(u, gα) (g= g(x, 0)), u being the initial data, and finally reconstruct
the weak solution at a later timeτ from its inner products with the functionsg(x, τ ). These
functions,g(x, t), can be found at timet = τ if they are known att = 0.

If this method is used with a small number of functions (i.e., smallN), the solution at
a timet > 0 will be underdetermined. In this case one can use the invariant measureµ to
“fill in” the gaps through regression, i.e., replace the weak solution which is not completely
known by its average (as determined byµ) over all solutions that satisfy theN conditions
(gα, u)=Vα. In other words, replace the functionu which is not completely known by
the regressionv= v(x, t)=〈u〉V . Some technical background on regression follows in
Section 3.

Note that so far, the construction resembles what is quite commonly done in underdeter-
mined linear problems (for example, in the context of data assimilation [1]; the functionsgα
are analogous to the “representers” which are used there). The construction is computation-
ally useful in certain linear problems even when alternate ways of finding future regressions
are available, as happens whenever time evolution and averaging commute (see [5]). How-
ever, the construction just presented is restricted to linear problems, and the amount of work
needed to evaluate and store the kernel functionsgα may not be trivial. It is also clear that
not all of the available information has been used, as the evolution of the kernelsgα is
independent of the invariant measureµ, and the measure used in the regression need not be
connected with the differential equation. Indeed, in geophysical applications the measure
is chosen according to considerations quite extraneous to the differential equations which
may be only partly known.
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We now wish to show how the machinery can be modified through the use of the invariant
measure in the evolution equations for the conditions, so that it becomes more efficient as
well as generalizable to nonlinear problems.

First, we must view the calculations differently. The measureµ induces a measure on the
space of the datau that satisfy the initial conditions: theconditional measureµV . In principle,
one can sample this induced, initial conditional measure by sampling the measureµ and
then keeping only those samples that satisfy the initial conditions. The initial conditional
measure depends on the parametersVα. The resulting conditional measure is not invariant in
time; for example, if the initial conditions consist ofN point-values of the functionsu(x, 0),
i.e., if we assume that att = 0 we have data that satisfyu(xα, t = 0)=Vα (the functions
gα are thenδ functions), there is no reason to believe that the solutions of the differential
equation that start from these data will satisfy these same conditions at all subsequent times
with the sameVα. We wish to average the solutions at later timest and we therefore have to
find the ways in which the constraints on the initial data affect the distribution of solutions
at later times. This is our central problem: in general, the future effect of partial initial data
requires the determination of the complete probability distribution of the solutions at later
times, and this is too hard to do. We are looking for an efficient, accurate, way to find the
later effect of the partial information given at timet = 0 by following in time only a small
number of variables.

Imagine first that one can sample the initial conditional measureµV ; find the (in general,
weak) solution of Eq. (4) that has this datum as initial condition and perform this procedure
repeatedly. At timet this produces an ensemble of functionsu(x, t) which inherits a mea-
sure from the initial data. In principle, this measure is well-determined; we wish to determine
it in practice and then to average with respect to this measure so as to obtain what we
call anoptimal prediction. Note that if the temporal evolution governed by (1) is ergodic
with respect to the invariant measure, the conditional measure will eventually relax to the
invariant measure and the initial conditions will be forgotten; we are in fact dealing with a
computational analog of non-equilibrium statistical mechanics.

Given the initial conditional measure, we can find the statistics ofLu, or, in the general
case (1), the statistics ofR(u) and consequently the statistics ofut ; thus, the evolution of the
measureµV can be determined for a short time interval1t . We cannot go beyond a short
time interval because the measureµV at time1t can no longer be described as the invariant
measure conditioned by the initial conditions (2), at least not with the same functionsgα
and the sameVα. This leads us to the closure assumption:

Assumption [Closure]. The conditional probability measure at timet, µV (t), can be
approximated by

µV (t) = µV(t), (7)

where the left hand sideµV (t) is the measure conditioned by the initial data (2), while the
right hand side is the invariant measure conditioned byN affine conditions of the form

(gα(t), u(t)) =
∫

gα(x, t)u(x, t) dx = Vα(t).

The kernelsgα(t) and the valuesVα(t) of the inner products will generally be different
at timet than at timet = 0, but it is assumed here that the affine form of the conditions and
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their number remain constant. We have already seen that in the linear case Eq. (7) is in fact
a theorem (a different analysis of this fact was given in [5]).

It should be noted that even though this is the assumption that will be used in the present
paper, it may be unduly restrictive in other situations; there is nothing magical about keeping
the number of conditions fixed, and the conditions need not in general be affine.

What we wish to do is to advance the measure to time1t and then to find the conditions
that produce that new measure at the new time. We assume that at all times the measure on
the space of solutions that issue from the initial data can be approximated as the invariant
measure modified byN constraints. The process can then be repeated as often as one
may wish. In the linear case we have already produced a recipe for updating the conditions:
there, we letgα satisfy the adjoint equation and keep the numbersVα fixed. We now propose
different,approximate, ways of finding conditions that describe the evolving measure. We
are going to do so by matching moments; on one hand, we will calculate moments of the
conditional measure by regression from the old moments, and on the other hand, we will
produce conditions that produce the new moments from the invariant measure; this will
produce equations of motion for the conditions.

More specifically, suppose that we computeNq moments ofu, at time1t . For example,
setq= 2, and compute the means and the variances with respect to the conditioned measure
of the random variablesu(x,1t) at each of theN pointsxα. We can do this knowing the
conditions at timet = 0 and the invariant measure. On the other hand, suppose we let
the functionsgα depend onq− 1 parameters; for example, ifq= 2, then we can pick
gα(x)= exp((x− xα)2/σα), where the “centers”xα are fixed and the numbersσα may be
allowed to vary in time and will serve as our parameters. If we write down the requirement
that the moments we calculated at time1t match the moments produced by conditioning
the invariant measure by affine conditions with unknown values of parameters such as the
σα and unknown values of the right-hand sidesVα, we obtainNq algebraic equations for the
parameters, which we can try to solve. If we solve these equations successfully, we obtain
a set of simultaneousordinarydifferential equations for the parameters and the moments.

Before carrying out such a calculation, two remarks: There is no a priori guarantee that
the algebraic equations we will obtain can be always solved: The basic assumption may fail,
and the choice of parameters may be unsuitable. A good numerical program will inform
us that a solution cannot be found. However, if a solution is found, the resulting moments
arerealizable. It is well known that closures may well produce moments that not only fail
to solve the problem at hand but do not solve any problem, because there is no stochastic
process that admits the computed moments as its moments (see, e.g., [22]). This is often a
major difficulty in the formulation of mean equations, and it does not arise here because a
conditional measure is a measure and it produces realizable moments by definition.

We limit ourselves in the present paper to the caseq= 1; i.e., for eachα, α= 1, . . . , N
we keep track of a single quantity, which we choose to be the mean value of the inner
product ofgα andu, 〈(gα, u)〉V = (gα, 〈u〉V ), while at the same time we modify a single
parameter in each condition; that single parameter is chosen to be the valueVα of theαth
product. Thus, while in the discussion above we allowed thegα to vary, we simplify the rest
of the presentation by keeping them fixed and changing only theVα. Thus, we must have
for α= 1, . . . , N,

d

dt
Vα = 〈(gα, ut )〉V = 〈(gα, R(u))〉V = (gα, 〈R(u)〉V ),
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whereR(u) is the right-hand side of Eq. (1). The final equation,

dVα
dt
= (gα, 〈R(u)〉V ), α = 1 . . . N, (8)

is the main equation used in the present paper. The more transparent mathematical notation,

dVα
dt
= E[(gα, R(u)) | V1, . . . ,VN ], α = 1 . . . N,

makes explicit the fact that we are dealing with a system ofN ordinary differential equations.
Once theVα are found at timet , a regression can be used to find the average solution at any
point x (see Section 3). We shall call an algorithm that uses, in the matching of moments
and parameters, only means of the unknown solutions and no higher moments, a first-
order prediction scheme; in the present paper this is the only prediction scheme we shall
use. We hope to demonstrate that a first-order prediction is often an improvement over
algorithms that take no cognizance of the invariant measure, in the sense that it requires
less computational labor than the alternatives; higher-order and more sophisticated optimal
prediction schemes will be described in subsequent work.

It is useful to contrast our algorithm with the one at the beginning of the section. We
are keeping the kernelsgα fixed while changing the valuesVα of the conditions, while the
“natural,” linear construction at the beginning of the section did the opposite.

When can we expect the first order optimal prediction scheme to be accurate? In a linear
problemut = Lu, if the kernelsgα are eigenfunctions of the operatorL† adjoint toL, then one
can readily see from the analysis at the beginning of the section that Eqs. (8) are exact, and
this remains true if thegα span an invariant subspace ofut + L†= 0. Lowest-order optimal
prediction should be accurate as long as thegα span a space that is approximately invariant
under the flow induced byL† (see [11, 12]). This remark also provides a recipe for choosing
the kernels. Something similar remains true in nonlinear problems [7, 16, 26]. Define the
space of functions spanned by the kernelsgα to be the resolved part of the solution; Eqs. (8)
should yield an accurate prediction of this resolved part (including a correct accounting for
the effect of unresolved components on the resolved components) as long as there is no
substantial transfer of information from the resolved part to the unresolved part and back;
if such information transfer should occur, a correct description of the flow should include
an additional, “memory,” non-Markovian term. This remark also points out that Eqs. (8)
should not be accurate for very long times (because memory terms are important to the
description of decay to equilibrium), and should be better at low temperaturesT than at
high temperatures (because the decay to equilibrium should be more rapid at highT).

There are other ways to ensure the accuracy of a first order optimal prediction scheme.
The quantities (gα, R(u)) are, of course, random variables whose distribution depends on
the measureµV . If the standard deviations of these variables are small, then Eqs. (8) are
be good approximations to the exact solution. Indeed, Eqs. (8) merely equate these random
variables to their means; a higher order approximation would take into account the variance
of these variables as well. The smaller the variance of the variables (gα, R(u)), the smaller
the error we expect; to some extent, we can control this variance by choosing the kernels
appropriately. The larger the support of the kernels, the more these variables represent spatial
averages, and the slower we may expect their variance to grow; thus if the scheme is to be
accurate, it is most likely that the functionsgα should not be narrow,δ-function-like objects.
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Furthermore, the kernels should not have disjoint supports (for an analogous observation in
the theory of vortex methods, see, e.g., [3]). Rigorous error bounds for the linear case can
be found in [12]. These conditions allow us to call the variables(gα, u) that appear in (2)
collective variables; they are groupings of variables. Note that as the numberN of collective
variables increases, optimal prediction homes in an ever smaller set of initial data, and the
variance of the variables(gα, R(u)) should decrease.

Finally, the presentation above started from a discussion of weak solutions, and indeed in
all the examples below the solutions will be weak; why is that so? We shall present a detailed
mathematical analysis elsewhere; here it should suffice to comment that if the solutions are
not highly oscillatory on several levels, there is less interest in analyzing methods that fail
to resolve them; solutions that do oscillate significantly on several scales appear, on the
largest scale, as non-smooth and therefore weak.

3. REGRESSION FOR GAUSSIAN VARIABLES

It was mentioned in the previous section that once the data that condition the state of the
system are found, or, at timet = 0 once the initial data have been chosen, the remainder of
the solution can be replaced by a regression. Formula (8), the first order optimal prediction
formula, is also a regression formula (an average conditioned by partial information). To
illustrate regression, and more importantly, to remind the reader of formulas that will be
used in the sequel, we collect in the present section some regression formulas for Gaussian
measures, both for the discrete and the continuous case. More details can be found in
standard books (e.g., [21] as well as in [6]).

We start by describing how to perform regressions on discrete sets of Gaussian (normal)
variables. Letu= (u1, . . . ,un) be a real vector of jointly normal random variables; it has a
probability densityf (u) of the form,

P(s1 < u1 ≤ s1+ ds1, . . . , sn < un ≤ sn + dsn) = f (s) ds1 . . .dsn

= Z−1 exp

(
−1

2
(s, As)+ b · s

)
ds1 . . .dsn, (9)

whereZ is the appropriate normalization factor,s= (s1, . . . , sn), and then× n matrix A
with entriesai j is symmetric, positive definite, and has an inverseA−1. The matrixA−1 is
the pairwise covariance matrix with elements

a−1
i j = Cov{ui , u j } ≡ 〈ui u j 〉 − 〈ui 〉〈u j 〉,

where the brackets,〈·〉, denote averaging with respect to the probability density; the vector
b with componentsbi is related to the expectation values ofu, 〈u〉= (〈u1〉, . . . , 〈uN〉), by

A−1b = 〈u〉.

The distribution is fully determined by then means and by the12n(n+ 1) independent
elements of the covariance matrix, and therefore the expectation value of any observable
can be expressed in terms of these parameters.
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Next, we assume that the random vectoru satisfies a set of conditions of the affine form,

gαi ui = Vα, α = 1, . . . , N < n, (10)

where the indexα enumerates the conditions and summation over repeated indices is as-
sumed. Each equation in (10) is a discrete analog of one of the equations in (2). TheN× n
matrixG, whose entries aregαi , determines the full set of conditions. To distinguish between
the random variables(u1, . . . ,un), and the collective variables(V1, . . . ,VN), we enumerate
the former by Roman indices and the latter by Greek indices.

Our goal is to compute regressions,E[φ(u) | V ], for various functionsφ, i.e., conditional
expectation values, or equivalently, averages over the functions that satisfy the conditions.
We state three lemmas that will become handy below; for proofs, see [6].

LEMMA 3.1. The conditional expectation of the variables ui is an affine function of the
conditioning data Vα,

〈ui 〉V = qiαVα + ci , (11)

where the n× N matrix Q, whose entries are the qiα, and the n-vectorc, whose entries are
the ci , are given by

Q = (A−1G†)(G A−1G†)−1,

c = A−1b− (A−1GT )(G A−1G†)−1(G A−1b),
(12)

where the dagger denotes a transpose.

LEMMA 3.2. The conditional covariance matrix has entries

Cov{ui , u j }V = 〈ui u j 〉V − 〈ui 〉V 〈u j 〉V = [ A−1− (A−1G†)(G A−1G†)−1(G A−1)] i j ,

(13)

where the subscript[ ] i j denotes the{ij } component of a matrix.

LEMMA 3.3. Wick’s theorem holds for constrained expectations, namely,〈
P∏

p=1

(
ui p −

〈
ui p

〉
V

)〉
V

=
{

0, P odd∑
permCov

{
ui1, ui2

}
V · · ·Cov

{
ui P−1, ui P

}
V , P even,

(14)

where the summation is over all possible pairings of the P coordinates that are in the list.

Equation (11) shows that conditioning data alter expectation values linearly in theVα
and independently of multiplicative factors in the covariances. Equation (13) shows that
conditioned covariances are determined by the matrixG alone, without reference to theVα.
Equation (14) shows that the conditioned Gaussian distribution, while not satisfying the
requirement that the covariance matrix be non-singular, retains a key property of Gaussian
densities.

In the applications below we shall use Gaussian variables parameterized by a continuous
variablex, i.e., Gaussian random functionsu= u(x). Their means,〈u(x)〉, and covariances,
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a−1(x, y)=〈u(x)u(y)〉− 〈u(x)〉〈u(y)〉, will be defined for all(x, y) in an appropriate range
rather than only for integer values of(i, j ). The matrixA−1 becomes the integral operator
whose kernel is a functiona−1. The kernela=a(x, y) of the operatorA inverse toA−1 is
defined by ∫

a−1(x, y)a(y, z) dy= δ(x, z).

The vectors with entriesgαi become functionsgα(x), and the conditions (10) become
Eqs. (2). The regression formula, (11), then changes into

〈u(x)〉V = 〈u(x)〉 + cβ(x)

[
Vβ −

〈∫
gβ(y)u(y) dy

〉]
,

where

cβ(x) =
{∫

a−1(x, y)gα(y) dy

}
m−1
αβ ,

and them−1
αβ are the entries of the matrixM−1 whose inverseM has entries

mαβ =
∫ ∫

gα(x)a
−1(x, y)gβ(y) dx dy.

The formula for the constrained covariance can be obtained from (13) by replacing each
i by an x, each j by a y, and each summation over a Latin index by the corresponding
integration. Wick’s theorem is still valid with the appropriate changes in notation; note that
the Greek indices, which refer to theN initial data, remain integers.

4. AN OVERVIEW OF INVARIANT MEASURES AND HAMILTONIAN FORMALISMS

Before proceeding with our numerical program, we summarize some material on
Hamiltonian systems, invariant measures in finite and infinite dimensional systems, and
the properties of certain measures. This material can be found in books on quantum field
theory and related topics (see, e.g., [10, 18, 23]). More specific references will be given
below; we take a very elementary point of view.

A Hamiltonian system is described in terms ofn “position” variables,qi , and their
associated “momenta,”pi , i = 1, . . . ,n; a Hamiltonian functionH=H(qi , pi )=H(q, p)
is given, and the equations of motion are

dqi

dt
= Hpi ,

dpi

dt
= −Hqi , i = 1, . . . ,n. (15)

If the initial values of the 2n variablesq, p are given, it is assumed that the system (15) has a
global solution in time. Suppose the initial data are chosen at random in that 2n dimensional
space, with a probability densityf (q, p, 0); it is easy to check that the probability density
of theq’s and p’s at timet satisfies the Liouville equation (see [10]),

ft +
∑

i

[
dqi

dt
fqi +

dpi

dt
f pi

]
= 0. (16)

An invariant density is a probability density that does not depend on time, i.e., one that
satisfies Eq. (16) withft = 0. Recall that by the definition of a probability density,f ≥ 0,
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and
∫

f dp dq= 1 (with obvious notations). One can readily see that any function ofH
with these two properties is an invariant density; the one that is natural for physical reasons
is f = Z−1 exp(−H/T), whereZ is a normalization constant andT is the “temperature.”
We setT = 1 unless specified otherwise. If the initial data are sampled from this initial
distribution, and each of these samples is used as an initial datum for the equations of
motion, then the probability distribution of the variablesq and p at any later timet will
be the same as it was initially. We now wish to generalize these notions of Hamiltonian
systems and invariant distributions to the infinite-dimensional case, where the equations of
motion will be partial differential equations and the invariant distributions will be called
“invariant measures.” We do so by way of an example that will be used in later sections.

Take the interval [0, 2π ] and divide it inton segments of lengthh. At each mesh point
jh, j = 1, . . . ,n, define variablesqi , pi ; introduce the “Hamiltonian”

H =
n∑

i=1

h

[
(pi+1− pi )

2

2h2
+ (qi+1− qi )

2

2h2
+ F(pi ,qi )

]
, (17)

where values ofq, p outside the interval are provided by an assumption of periodicity,
and the term in brackets is a Hamiltonian density. Consider the set of ordinary differential
equations,

dpi

dt
= −1

h
Hqi = 1hq − Fqi , (18)

where1hq= (qi+1− 2qi +qi−1)/h2, and similarly,

dqi

dt
= 1

h
Hpi = −1h p+ Fpi . (19)

Note that the right hand side contains a factorh−1 that has no analog in the finite dimen-
sional system above; its effect is to differentiate the Hamiltonian density rather than the
Hamiltonian itself. This modification is needed to get self-consistent limits ash→ 0, a
limit operation we shall now undertake (see [10, 18]). Ash→ 0, these equations formally
converge to {

pt = qxx − Fq,

qt = −pxx + Fp,
(20)

or, writing u=q+ ıp with imaginary ı and F ′(u)= Fq+ ıFp, we find an equation of
Schrödinger type,

ıut = −uxx + F ′(u). (21)

The Hamiltonian, (17), converges formally to∫ 2π

0

[
1

2
|ux|2+ F(u)

]
dx, (22)

where the vertical lines denote a modulus. The limith→ 0 requires further examination;
see, e.g., [23] for a physics analysis and [15] for a mathematical analysis.
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For every finiteh, the (finite dimensional) measure

Z−1 exp

[
−h
∑( |ui+1− ui |2

2h2
+ F

)]
, (23)

is invariant for the system (18)–(19). Note that this is true both with and without the extra
factorh−1 in Eqs. (18)–(19). What is the limit of this measure ash→ 0? Set for a moment
F = 0. The exponential in (17) factors into a product of terms each one of which is the
exponential of a single difference quotient, of the form exp[−(pi+1− pi )

2/2h] or with q
replacingp. Hence, thep variables are independent of theq variables. Furthermore, the
“increments” pi+1− pi , qi+1−qi , are obviously Gaussianly distributed, have a variance
proportional to the distanceh, and are all independent of each other. Thus in the limit, the
functionsq(x) (and similarly forp(x)) are made up of independent Gaussian increments.
They differ from Brownian motion (see [9]) by being periodic rather than satisfyingq(0)= 0
(they are “Brownian bridges”—which does not make a deep difference). Also, as long as
F = 0, the common value ofq(0) andq(2π) are undetermined because the exponent of
the exponential is unchanged when one adds a constant to theqi ; one can remove this
degeneracy by adding a term to the exponent that is sensitive to the value ofq(0). Thus, the
limit of

Z−1 exp

{
−h
∑[

(qi+1− qi )
2

2h2
+ (pi+1− pi )

2

2h2
+ F(q, p)

]}
dq1 · · ·dqn dp1 · · ·dpn,

can be written as

d Bc · exp

(
−
∫

F dx

)
, (24)

whereBc is a suitably conditioned Brownian (Wiener) measure.
As is well known (see, e.g., [9]), a sample Brownian path is, with probability one, nowhere

differentiable. This fact is not changed by the factor exp(−∫ Fdx) in (24); thus if we sample
initial data from (24) we obtain weak solutions of the equation of motion (21), as was indeed
assumed in Section 2. In addition, the integral

∫ |ux|2 dx diverges, so that the limit in (17)
is purely formal; its meaning is given by Eq. (24). An important consequence of these
facts is that the exponential in (23) tends to zero ash→ 0; this is indeed necessary if
we are to have a reasonable function-space measure: Ash→ 0, we have a measure on a
space of increasing dimension, the density of functions that satisfy the set of inequalities
si <qi ≤ si + dsi , i = 1, . . . ,n, should decrease asn increases, thus exp(−H) should tend
to zero andH should diverge.

Weak solutions that are spatially like Brownian motion are difficult to resolve; difference
quotients do not converge, and the Fourier series expansions of these solutions converge
slowly. We are thus consistent: our machinery applies in problems where it is indeed needed.
Such problems are not exceptional; for example, in the vanishing-viscosity limit, the solu-
tions of the Euler equations have a H¨older exponent of 1/3; i.e., they are even less smooth
than Brownian motion (see [20]).

Finally, a computational comment that will be useful below: Brownian motions and
Brownian bridges are easy to sample via interpolation formulas related to the regression
formulas of the previous Section 3 (see, e.g., [2, 17]); to modify the measures so as to
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take into account the factor exp(−∫ F dx) requires simply that the samples be rejected or
accepted with some form of a Metropolis algorithm.

5. AN EXAMPLE OF CONDITIONAL EXPECTATIONS

WITH A NON-GAUSSIAN PRIOR

Our goal in this section is to introduce a systematic approach for solving the equations
of optimal prediction (8) for nonlinear equations of the form (1). We assume that Eq. (1)
has Hamiltonian form; i.e., we assume that there exists a HamiltonianH such that (1) is the
Hamilton equation of motion with this Hamiltonian. We can therefore assume the existence
of a prior measure,µ(u) whose densityf has the form

f (u) = Z−1e−H(u), (25)

with Z a normalization constant.
In order to solve Eq. (8), we must compute the conditional expectations on its RHS,

(g, 〈R(u)〉V ), (26)

with R being the RHS of Eq. (1). This task is relatively simple when the prior mea-
sureµ is Gaussian; we address here the problem of what to do when it is not. The method
we present is based on perturbation theory; see, e.g., [8, 13, 14]. The idea is to reduce the
computation of (26) to the computation of regressions with respect to a Gaussian measure
via a perturbation expansion.

We start by splitting the Hamiltonian into two parts,

H = H0+H1. (27)

HereH0 is quadratic (producing a Gaussian measureµ0) andH1 is a non-quadratic pertur-
bation. A conditional expectation of a functionalF(u) is defined as

〈F〉V = Z−1
∫
F(u) dµV , (28)

with the normalization constantZ= ∫ dµV . Averages with respect to Gaussian measures
will be singled out by a superscript 0,

〈F〉0V = Z−1
0

∫
F(u) dµ0

V , (29)

with Z0=
∫

dµ0
V . Based on the Hamiltonian split, (27), we can carry out the expansion

e−H = e−H
0
∞∑

k=0

(−1)k

k!
(H1)k, (30)

which can be then utilized to write∫
F(u) dµV =

∞∑
k=0

(−1)k

k!

∫
[F(u)(H1)k] dµ0

V . (31)
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Hence, combining (28), (29), and (31) we find

〈F〉V =
∞∑

k=0

(−1)k

k!

Z0

Z
〈(H1)kF〉0V .

The ratioZ0/Z is(
Z0

Z

)−1

=
∫

dµV∫
dµ0

V

=
∞∑

k=0

(−1)k

k!

∫
(H1)k dµ0

V∫
dµ0

V

=
∞∑

k=0

(−1)k

k!
〈(H1)k〉0V ,

and therefore

〈F〉V =
∑∞

k=0((−1)k/k!)〈(H1)kF〉0V∑∞
k=0((−1)k/k!)〈(H1)k〉0V

.

In particular, forα= 1, . . . , N,

(gα, 〈R(u)〉V ) =
∑∞

k=0((−1)k/k!)
(
gα, 〈R(u)(H1)k〉0V

)∑∞
k=0((−1)k/k!)〈(H1)k〉0V

. (32)

The RHS of (32) is now written in terms of expectation values that we already know how to
compute since they are averages with respect to a Gaussian measure. Note that the division
by Z/Z0 can be avoided by removing certain terms from the numerator of (32); indeed,
(32) is a conditioned expansion in Feynman diagrams and it can be normalized by removing
unconnected graphs (see [8, 13, 14]). We choose not to explain this fact here. Note also that
the leading term in the expansion, (corresponding tok= 0), where the measureµV is simply
replaced byµ0

V , already contains a contribution of the nonlinear terms in the equation of
motion.

Computing a finite number of terms in the series expansion (32) can still be a relatively
complicated task, and we demonstrate in Section 6 a step-by-step solution of a model prob-
lem. The reader should not be unduly worried by the complexity of some of the expressions,
because: (i) To make the exposition as clear as possible, no advantage is being taken here
of various ways of simplifying the expressions, such as, e.g., using orthogonal functions
for thegα; (ii) much of the algebra can be automated (see below).

The partition ofH into Gaussian and non-Gaussian parts is not unique, and in Sections 6
and 7 we shall discuss some ways to optimize it in order to gain accuracy.

6. A PERTURBATIVE TREATMENT OF A NONLINEAR SCHR ÖDINGER EQUATION

We now utilize the perturbation method to approximate solutions of the nonlinear
Schrödinger equation of the form (21),

ıut = −uxx + 1

4
[3|u|2u+ u∗3], u = q + ıp, (33)

in the interval [0, 2π ], with periodic boundary conditions. Equation (33) can also be written
as the pair of equations, {

pt = qxx − q3,

qt = −pxx + p3.
(34)
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The corresponding Hamiltonian is

H(p,q) = 1

2

∫ (
p2

x(x)+ q2
x(x)+

1

2
[ p4(x)+ q4(x)]

)
dx, (35)

and hence, Eqs. (34) preserve the canonical density

f0(p,q) = Z−1e−H(p,q).

(Note that the temperatureT has been set equal to 1.) To simplify the example, we follow
[6] and use the same kernels in the definition of the collective variables forp andq, i.e.,
the collective variables are

{
U p
α ,U

q
α

} = {(gα, p), (gα,q)}, α = 1, . . . , N, (36)

and their initial values,V p
α , Vq

α , are given. The system of ordinary differential equations
arising out of Eq. (8) for theV p

α , Vq
α is

dV p
α

dt = +
(
gα,

∂2

∂x2 〈q〉V
)− (gα, 〈q3〉V ),

α = 1, . . . , N.
dVq

α

dt = −
(
gα,

∂2

∂x2 〈p〉V
)+ (gα, 〈p3〉V ),

(37)

We therefore have to compute the four terms (gα, ∂xx〈q〉V ), (gα, ∂xx〈p〉V ), (gα, 〈q3〉V ),
and(gα, 〈p3〉V ).

The first step is to split the Hamiltonian into two parts—a quadratic and a non-quadratic
part,H=H0+H1; this will be done in the next section. We will just note at that point,
thatH0 will be of the form

H0 = 1

2

∫ [
p2

x(x)+ q2
x(x)+m2

0(p
2(x)+ q2(x))

]
dx.

Once this is done, the RHS of (37) can be computed following (32). For example, the term
(gα, 〈p3〉V ) can be obtained by substitutingp3 for R(u) in that equation. In particular, the
zeroth, leading term is

(
gα, 〈p3〉0V

)
(38)

(note that this term already includes a nonlinear effect); a first-order (in the perturbation
series) approximation will add the term

(
gα, 〈p3H1〉0V

)(
1− 〈H1〉0V

) , (39)

and so on, with similar expressions for the rest of the terms on the RHS of (37). Note that all
these expansions are used to solve the equations of first-order prediction; in principle, we
can perform higher-order predictions by using higher moments in setting up the matching
of conditions before Eq. (8), and then improve the evaluation of the right-hand side of
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Eq. (8) by using more terms in the perturbation expansion. We consider here only the latter
possibility.

The leading-order terms (38) can be computed using the results of Section 3. For the
first-order term, (39), we have

〈p3H1〉0V =
1

4

〈
p3
∫ [

p4+ q4− 2m2
0(p

2+ q2)
]

dz

〉0

V

;

and we therefore have to compute〈
p3

∫
ps dz

〉0

V

=
∫

z
〈p3(x)ps(z)〉0V dz,

〈
p3

∫
qs dz

〉0

V

=
∫

z
〈p3(x)qs(z)〉0V dz

for s= 2, 4. To summarize, the RHS of (37) involves integration (with respect toz) and
differentiation (with respect tox) of the following (with j = 1, 3 ands= 2, 4)

〈pj (x)ps(z)〉0V , 〈pj (x)qs(z)〉0V , 〈q j (x)ps(z)〉0V , 〈q j (x)qs(z)〉0V . (40)

The terms in (40) can be computed by application of Wick’s theorem (Lemma 3.3); the
algebra can be performed with aid of a symbolic computer program (such as Mathematica).
In particular, one obtains the identities

〈p(x)p2(z)〉 = −2〈p(x)〉〈p(z)〉2+ 2〈p(z)〉〈p(x)p(z)〉 + 〈p(x)〉〈p2(z)〉

· 〈p(x)p4(z)〉 = 6〈p(x)〉〈p(z)〉4− 8〈p(z)〉3〈p(x)p(z)〉 − 12〈p(x)〉〈p(z)〉2〈p2(z)〉

+ 12〈p(z)〉〈p(x)p(z)〉〈p2(z)〉 + 3〈p(x)〉〈p2(z)〉2

· 〈p3(x)p2(z)〉 = −12〈p(x)〉2〈p(z)〉〈p(x)p(z)〉 + 6〈p2(x)〉〈p(z)〉〈p(x)p(z)〉

+ 〈p(x)〉3(6〈p(z)〉2− 2〈p2(z)〉)+ 〈p(x)〉[6〈p(x)p(z)〉2

+〈p2(x)〉(−6〈p(z)〉2+ 3〈p2(z)〉)] (41)

· 〈p3(x)p4(z)〉 = 72〈p(x)〉2〈p(z)〉〈p(x)p(z)〉(〈p(z)〉2− 〈p2(z)〉)

+〈p(x)〉3(−20〈p(z)〉4+ 36〈p(z)〉2〈p2(z)〉 − 6〈p2(z)〉2)

+ 12〈p(z)〉〈p(x)p(z)〉[2〈p(x)p(z)〉2+ 〈p2(x)〉(−2〈p(z)〉2

+ 3〈p2(z)〉)] + 9〈p(x)〉[4〈p(x)p(z)〉2(−2〈p(z)〉2+ 〈p2(z)〉)

+〈p2(x)〉(2〈p(z)〉4− 4〈p(z)〉2〈p2(z)〉 + 〈p2(z)〉2)].

All the averages in Eq. (41) are of course conditioned byV ; the constant repetition of the
subscriptV and the superscript 0 has been avoided for esthetic reasons.

We now pick the kernelsgα(x) to be translates of a fixed functiong(x), i.e.,gα(x)= g(x −
xα), which is a normalized (not random!) Gaussian with periodic images and widthσ ,

g(x) = 1√
πσ

∞∑
τ=−∞

exp

[
− (x − 2πτ)2

σ 2

]
. (42)
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We note that the Fourier representation ofg(x) is g(x)= 1
2π

∑∞
k=−∞ eιkx−(1/4)k2σ 2

. Given
this choice of kernel functions we can write

〈p(x)〉0V =
N∑
α=1

cpp
α (x)V

p
α , (43)

where

cpp
α (x) = cqq

α (x) =
1

2π

N∑
β=1

∞∑
k=−∞

e−
1
4 k2σ 2

k2+m2
0

exp[ık(x − xβ)][m
−1] pp

βα,

and

mpp
βα =

1

2π

∞∑
k=−∞

e−
1
2 k2σ 2

k2+m2
0

exp[ık(xα − xβ)].

This choice of kernels is the same as in previous work [5, 6]. It is far from optimal in the
context of perturbation theory; in particular, orthogonal kernels such as the Fourier kernels
used in Section 7 below reduce the number of non-zero terms in the expansion. We thought
that we should present at least once a perturbative calculation with a general kernel.

6.1. The partition of the Hamiltonian.We now turn to the question of how exactly
the Hamiltonian should be divided into a sum of a quadratic part and a perturbation,H =
H0+H1. Of course we wishH1 to be as small as possible, so as to have a perturbation
series that behaves as well as possible; we therefore perform a partition with a few free
parameters over which we shall minimizeH1; we choose to write

H0 = 1

2

∫ 2π

0

(|ux|2+m2
0|u|2+ b

)
dx,

(44)

H1 = 1

2

∫ 2π

0

(
F −m2

0|u|2− b
)

dx,

where, as before,u=q+ ıp, F = 1
2(p

4+q4). There are no odd powers in the partition
because the measure is invariant under the reflectionu↔ (−u); note that the termm2

0|u|2
removes the indeterminacy in the Gaussian measure defined byH0. This is not the only
partition that can be considered; one could for example add and subtract squares of fractional
derivatives ofu. The task at hand is to choose good values for the parametersm0 andb.
They cannot in general be chosen so as to make the perturbation series convergent; what
one would really want is to make the measure defined byH and conditioned by theVα
be a small perturbation of the conditional measure defined byH0, and while this can in
principle be done, and would presumably lead to time-dependent equations form0 andb, it
is reasonable, as a first try, to choosem0 andb so as to minimize〈H1〉, 〈(H1)2〉, where the
averages are unconditional. Note also that the presence of the termb leaves all averages with
respect to the measure defined byH0 unchanged—it gets absorbed into the normalization
constantZ—but it does affect the expansion of exp(−H1).
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A straightforward algebraic manipulation, simplified by the fact thatp andq are uncor-
related and that〈ps〉= 〈qs〉 for all s, leads to

〈(H1)2〉0 = 1

16

∫ 2π

z=0

∫ 2π

x=0
dx dz

[
2〈p4(x)p4(z)〉0+ 2(〈p4(x)〉0)2− 8m2

0〈p4(x)p2(z)〉0

− 8m2
0〈p4(x)〉0〈p2(z)〉0+ 8m4

0(〈p2(x)〉0)2+ 8m4
0〈p2(x)p2(z)〉0], (45)

where the〈·〉0, denotes average with respect to the unconditional Gaussian measure. Using
the expressions (41), one can numerically minimize (45) as a function ofm0. This minimum
is obtained atm0≈ 1.055.

After settingm0, we are free to pick the second constant,b, in (44). Changingb will not
affect the variance which we just computed in (45). We choose to set the first moment of
the perturbation to zero, i.e.,

〈H1〉0 = 0. (46)

Given the partition, (44), it is clear that (46) holds if

bπ = 1

4

〈∫ [
p4+ q4− 2m2

0(p
2+ q2)

]
dx

〉0

. (47)

With the aid of Wick’s theorem and Eq. (43), Eq. (47) can be rewritten as

bπ =
[

3

4π

∞∑
k=−∞

1

k2+m2
0

−m2
0

]
·
∞∑

k=−∞

1

k2+m2
0

. (48)

If one choosesm0= 1.055 so as to minimize the second moment of〈H1〉, the RHS of
(48) equals−1.197, which in turn determinesb=−0.381 so that the first moment of the
perturbation will vanish. Note that even the zeroth order expansion uses information about
the higher-order terms, since the parameters that determine the partition and thus the zeroth
order term depend on an analysis of the later terms.

One should also note that once the future conditions have been determined, one has to
perform further regressions to obtain the mean solutions at various points in space; the
machinery there is exactly analogous to what has just been done and will not be spelled out
here.

6.2. Numerical checks.We now check the perturbation series as well as the optimal
prediction scheme by comparing the results they give with numerical results obtained at
substantial expense by sampling the initial conditions, solving the differential equations
over and over, and averaging. We concentrate in the present section on the caseN= 2, i.e.,
a case where we have initially as data only four values of collective variables and are trying
to find the mean future conditioned by these four values. We display only the variation
in time of these collective variables,U p

α ,U
q
α , α= 1, 2, which were defined in Eq. (36);

The kernels are taken asgα(x)= g(x− xα) with x1=π/8 andx2= 9π/8. The parameter
σ is set asπ . We first use the perturbation series with the optimal valuesm0= 1.055 and
b=−0.381 computed in Subsection 6.1. We then display results obtained with different
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values ofm0 andb. Specifically, we choosem0= 0.9 andb= 0, obtained by splitting the
Hamiltonian into

H0 = 1

2

∫ 2π

0

(|ux|2+m2
0|u|2

)
dx,

H1 = 1

2

∫ 2π

0

(
F −m2

0|u|2
)

dx,

and requiring only that the first moment of the perturbation vanish, i.e.,〈H1〉0= 0 (compare
with (44) and (46)).

We check these results by replacing the continuum equations (34), (37), by a formal finite
difference approximation conditioned by discrete forms of these equations, and then display
the convergence of the conditioned mean of many solutions of the difference equations to the
optimal prediction obtained by the perturbation analysis. Specifically, we replace Eq. (34)
by the difference equations


dp( j )

dt = q( j − 1)− 2q( j )+q( j + 1)
h2 −q3( j ),

dq( j )
dt = − p( j − 1)− 2p( j )+ p( j + 1)

h2 + p3( j ),
j = 1, . . . ,n, (49)

whereh= 2π/n is the mesh size. The conditions (36) are replaced by the discrete approx-
imations

U p
α =

n∑
j=1

hgα( j )p( j ), Uq
α =

n∑
j=1

hgα( j )q( j ), α = 1, 2. (50)

(A factor h has been introduced in the definition of the collective variables to allow them
to converge to the continuum collective variables(gα, u)=

∫
gα(x)u(x) dx.)

The Hamiltonian (35) is replaced by the discrete Hamiltonian,

H(p,q) = h

2

n∑
j=1

{[
p( j + 1)− p( j )

h

]2

+
[

q( j + 1)− q( j )

h

]2

+ 1

2
[ p4( j )+ q4( j )]

}
.

(51)

We present results obtained with two mesh sizes, corresponding ton= 8 andn= 16. We
also checked that the results withn= 32 are very close to the results withn= 16. For each
mesh sizeh we use a Metropolis Monte Carlo algorithm to find 5000 initial data drawn
from the distribution defined by (51) conditioned by the values of the collective variables,
integrate the equations in time up tot = 1, and average the results at various fixed time
intervals. This numerical calculation is very costly, even for moderate values ofn, but it
is independent both of the perturbative analysis and of the machinery of optimal prediction.
It is important to note that as the mesh sizeh tends to zero, the results of a standard (i.e., non-
averaged) finite-difference solution of Eq. (34) with data drawn from the distribution (51)
diverge pointwise ash→ 0. Conditional averaging provides the only meaningful numerical
solution of Eqs. (49) for such initial data.
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FIG. 1. Time evolution of four collective variablesU p
1 ,U p

2 ,Uq
1 , andUq

2 for the nonlinear Schr¨odinger equation
(34), (49), with the optimalm0= 1.055,b=−0.38; Solid lines, optimal prediction equations. Dotted lines, average
over 5000 solutions obtained from initial data sampled from the discrete Hamiltonian (51) withn= 8 andn= 16
points.

In Fig. 1 we present the evolution in time of the four collective variablesU p
1 , U p

2 , Uq
1 ,

andUq
2 with the optimalm0= 1.055, b=−0.38. Figure 2 presents the plots corresponding

to the choicem0= 0.9 andb= 0. The zeroth-order solution is the optimal prediction solu-
tion obtained with only the zeroth, leading, term in the perturbation expansion (see, e.g.,
Eq. (38)). The first-order solution is the optimal prediction solution obtained after adding
a first-order correction to the perturbation series. Note however that the optimal choice of
parameters uses information about terms of order one.

In both figures, the solid lines are the solutions obtained with the optimal prediction
equations, while the dotted lines represent an average over over 5000 solutions that evolve
from initial data sampled from the conditioned discrete Hamiltonian (51).

Clearly, there is an improvement when one uses additional terms in the perturbation
series. Also, even though the individual numerical solutions converge only weakly to a
continuum limit, the average over numerical solutions with data sampled from the discrete
Hamiltonian on one hand and the solution of the optimal prediction equations on the other
hand get close asn increases. The perturbation expansion converges rapidly; the key graph
is the one on the bottom right of Fig. 1: the comparison between the expansion up to first-
order with the average numerical solution withn= 16. One conclusion we draw from these
graphs and we use in Section 7 is that with the optimal partition of the Hamiltonian one can
obtain an accurate solution with only the zeroth term in the expansion; the computation of
the optimal parameters in the expansion used the first-order term.

The limitations of first-order optimal prediction are displayed in Fig. 3, where the in-
tegrations are carried out to longer times. We are working with a temperatureT = 1, i.e.,
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FIG. 2. Time evolution of four collective variablesU p
1 ,U p

2 ,Uq
1 , andUq

2 for the nonlinear Schr¨odinger equation
(34), (49), withm0= 0.9,b= 0; Solid lines, optimal prediction equations. Dotted lines, average over 5000 solutions
obtained from initial data sampled from the discrete Hamiltonian (51) withn= 8 andn= 16 points.

the fluctuations inu are of order 1; by contrast, in the longer runs of [5, 6] we used a
smaller temperatureT =π/15; we also have only 4 collective variables, not enough at
this temperature to keep the variances of the collective variables small. In Fig. 3 the opti-
mal prediction solution is based on the optimal choice ofm0= 1.055, b=−0.38, and the

FIG. 3. Longer time evolution of four collective variablesU p
1 , U p

2 , Uq
1 , andUq

2 for the nonlinear Schr¨odinger
equation (34), (49), with the optimalm0= 1.055,b=−0.38; Solid lines, optimal prediction equations. Dotted
lines, average over 5000 solutions obtained from initial data sampled from the discrete Hamiltonian (51) with
n= 16 points.



288 CHORIN, KUPFERMAN, AND LEVY

FIG. 4. Long time evolution of the collective variables for initial distributions of the forme−H/T with
(a) T = 0.2 and (b)T = 4.

discrete solution is presented forn= 16. Once again, the numerical solution is an average
over 5000 individual solutions.

The effect of temperature is displayed in Fig. 4, where we present the time evolution
of the four collective variables,U p

α , Uq
α up to timet = 5. Both graphs are for the same

initial values ofU p
α andUq

α but differ in the temperature which determines the distribution
of initial data. The graph on the left corresponds to a low temperature,T = 0.2, whereas
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the graph on the right corresponds to a high temperature,T = 4. As expected, the higher
the temperature, the faster is the decay towards equilibrium; the collective variables tend
faster towards their equilibrium value of zero, and the first-order prediction scheme with
a small, fixed number of conditions loses accuracy faster. There are two ways to improve
the prediction: Go to more sophisticated prediction theory, as outlined in Section 2, or
increase the number of collective variables. The first alternative will be explored in later
publications; the value of the second approach will be shown in the next section, with a
choice of kernels that reduces the amount of labor and also makes possible an analytical
estimate of the difference between optimal prediction and a simple scheme that makes no
use of the prior measure. Note that the optimal prediction runs yield good results when the
standard deviation of the values of the collective variables is as large as 50% of their mean
(the standard deviation of the pointwise values of the solutions is much larger still).

7. PSEUDO-SPECTRAL OPTIMAL PREDICTION FOR A MODEL

NONLINEAR PROBLEM

In the present section we consider a discrete version of the same Schr¨odinger equation
as above; our goal is to show explicitly how the information in the prior measure improves
the accuracy of an underresolved nonlinear calculation. One of the striking facts shown
by the example is that first-order optimal prediction is useful in nonlinear problems. In
view of the rapid convergence of the conditional expectations of discrete problems to their
continuum limits, as displayed in the previous section, we shall be content with the discrete
problem. Specifically, we shall contrast the solution of a discrete problem by a pseudo-
spectral method that takes no cognizance of the prior measure with a closely related optimal
prediction scheme with Fourier kernels and show how the information in the prior measure
improves the predictions. In the present section, a complex-function formalism turns out to
be more transparent, and we therefore slightly change the notations. We consider a set of
complex ordinary differential equations which is a formal discretization of our Schr¨odinger
equation, (33),

ı
∂u j

∂t
= −u j−1− 2u j + u j+1

h2
+ 1

4
[3|u j |2u j + (u∗j )3], (52)

with j = 1, . . . ,n and h= 2π/n. Equations (52) are the Hamilton equations of motion
derived from the Hamiltonian

H(u) = 1

2

n∑
j=1

{ |u j+1− u j |2
h

+ h

16

[
u4

j + 6|u j |4+ (u∗j )4
]}

(53)

(see Section 4). One can readily verify that this is the same discrete Hamiltonian as before.
The prior measure is the canonical measure whose density is

f (u) = 1

Z
e−H(u). (54)

Note that we writeu without boldface, as we did in the case of functions, but not as we did
for vectors; this is done by analogy with the previous sections on the Schr¨odinger equation.
(Those who look at our earlier papers [4–6] will notice that the measure here differs from
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the measure used there by a factorh in the exponent, and also that we used a different spatial
period.) Equation (54) requires an explanation when the variablesu j are complex. A set
of n complex variables can be treated as a set of 2n real variables. However, when the real
and imaginary partsqi , pi of each variableui are independent and their means are zero (as
they are here), one can write

P(s1 < q1 ≤ s1+ ds1, . . . , r1 < p1 ≤ r1+ dr1, . . . , rn < pn ≤ rn + drn)

= F(z) dz1 . . .dzn = Z−1 exp

(
−1

2
(z, Az∗)

)
dz1 . . .dzN, (55)

wherezi = si + ır i , dzi = dsi dri , and the matrixA is hermitian. WhenH is a quadratic
function of the vectoru, Eq. (54) definesA in the complex case.

The prior measure (54) being non-Gaussian, we proceed as above and partition the
Hamiltonian into a quadratic part plus a perturbation,H=H0+H1. To make the example
amenable to analysis we keep only the leading term in this expansion; we already pointed
out that the leading term contains a contribution of the nonlinear terms in the equation
and that the partition takes into account higher order terms in the expansion. As explained
above, there is here only one relevant partitioning parameter,m0. Thus we approximate the
probability density byf (u)= Z−1

0 e−H
0(u), where

H0(u) = 1

2

n∑
j=1

{ |u j+1− u j |2
h

+ hm2
0|ui |2

}
. (56)

We work here withn= 32. In this finite dimensional case, we rederived the optimal value
of m0 as follows: We calculated the two-point correlation function〈ui u∗j 〉0 for the measure
(54) by a Monte Carlo method, and then found the value ofm0 that best reproduces this
correlation function by minimizing the mean-square difference between this correlation
function and the correlation function produced by (56). This yieldedm0= 1.055, confirming
the value obtained above. The procedure used here minimized the difference between the full
measure and its quadratic piece while the more general procedure of the previous sections
minimizes only the first few terms in an expansion; it is comforting that the results agree.
For readers of our earlier papers [4–6], we point out that the present procedure differs from
the “Gaussianization” proposed there by using an analytical expression for the approximate
measure, whereas in the previous publications we needed to store the full covariance matrix.
Furthermore, the present construction produces a first term in a systematic expansion.

In Fig. 5 we compare the exact two-point correlation function〈ui u∗j 〉 obtained by a Monte
Carlo sampling (open circles) to the Gaussian approximation (solid line),

Ci j = 〈ui u
∗
j 〉0 =

1

π

n∑
k=1

eık(xi−xj )

(4/h2) sin2(hk/2)+m2
0

, (57)

derived from (56). The discrepancy is negligible compared with the statistical uncertainty
in the sampling procedure.

The formulas for calculating conditional expectations (11)–(13) can be generalized to
deal with complex functions. Assume we haveN conditions of the form,

gαi ui = Vα,
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FIG. 5. Comparison between the two-point correlation function〈ui , u∗j 〉, as computed by a Monte Carlo
sampling procedure, and its approximation (57) based on the Gaussian measure (56) withm0= 1.05. The number
of points isn= 32.

where thegαi are the complex entries of theN× n kernel matrixG and the entries of the
vectorVα are the values of theN collective variables defined byG. The formulas for the
conditional means and variances of the complex vectorui generalize Eqs. (11) and (13);
the conditional average ofui is

〈ui 〉0V = qiαVα;

theqiα are the entries of the matrixQ= (CG†)(GCG†)−1, whereC, whose elements are
defined in (57), is the matrix that approximates the inverse of the matrixA defined in (55).
The dagger denotes an adjoint (hermitian transposed) matrix. The conditional covariance
matrix has entries

Cov{ui , u
∗
j }0V = [C − (CG†)(GCG†)−1(GC)] i j .

We now make a special choice of kernelsG. We pick them so that what is known at time
t = 0 is a set of Fourier modes, fewer than are necessary to specify the solution completely.
This makes thegαi complex exponentials,

gαi = 1

n
exp(−ıKαxi ).

If the number of conditionsN is even, theKα take the values− N
2 + 1, . . . , N

2 . Note the
following property of the resulting matrixG,

GG† = 1

n
I , (58)
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whereI is theN× N identity. Spectral variables are particularly convenient here because,
if u is expanded in Fourier series, and this series is substituted into the formula for the
HamiltonianH, the result is a sum of squares of Fourier coefficients; the prior measure
is “diagonal in Fourier space.” This can also be deduced from the fact that the measure is
Gaussian and translation-invariant in the variablex. In particular, afteru is expanded in
Fourier series, the matricesA, C are both diagonal. A short calculation yields

Q = nG†,

from which follows

〈u〉0V = nG†V, (59)

and

Cov{ui , u
∗
j }0V = [C − nG†GC] i j . (60)

Equation (59) is the interpolation formula for the first moment ofu. Recall thatV =Gu,
hence〈u〉V = nG†Gu. The operatornG†G is a Galerkin projection operator which projects
any vector onto the vector space spanned by the range ofG. Thus, the mean ofu produced
by our regression formula equals the mean obtained from a simple Fourier series that uses
the known coefficientsVα (we shall call this Fourier series the “Galerkin reconstruction”).
This is as it should be. In a translation-invariant Gaussian measure the Fourier components
are mutually independent; the knowledge of the first few does not condition the next ones,
whose expected value is therefore zero. However, the measure does contain information
about the higher moments of the higher Fourier coefficients, and this is important in a
nonlinear problem.

The difference between the Galerkin reconstruction and the regression used in the optimal
prediction of moments is demonstrated in Fig. 6. The three graphs depict the first three
moments, calculated (i) by a Monte Carlo sampling of the measure (54) conditioned by
N= 4 known collective variables (symbols), a Galerkin reconstruction (dashed lines), and
our regression formulas (solid lines). We chose a system size ofn= 32 with N= 4 resolved
(i.e., known) Fourier modes. For the first moment,〈ui 〉V (calculated by Monte Carlo), the
Galerkin reconstruction and the regression are close to each other. For the second and third
moments the regression, which is the core of optimal prediction, is close to the truth, as
revealed by the Monte Carlo runs; the error is smaller than the statistical uncertainty in
the sampling. The Galerkin reconstruction, on the other hand, deviates significantly from
the truth. These graphs demonstrate the importance of the prior measure, which contains
information about the mean squares of the unresolved Fourier components.

We next derive the optimal prediction scheme for our model problem with Fourier kernels.
Given a set of Fourier modes,Vα, we replace the right-hand side of (52) by its conditional
average and multiply the result by the kernel matrixG. Thus,

ı
dVα
dt
= gαi

〈
−ui+1− 2ui + ui−1

h2
+ 1

4
[3|ui |2ui + (u∗i )3]

〉0

V

.

Substituting the regression formulas (59) and (60) and using Wick’s theorem and (58), we
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FIG. 6. Conditional moments ofu. Comparison between true values (symbols), a Galerkin reconstruction
(dashed lines), and regression (solid lines). (a) The conditional expectation〈ui 〉V ; the circles represent the real
part and the crosses represent the imaginary part. (b) The variance〈u2

i 〉V . (c) The third moment Re〈|ui |2ui 〉V . The
number of points isn= 32, and the number of Fourier modes that are assumed known isN= 4.
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obtain the set ofN equations

ı
dVα
dt
= 4

h2
sin2 Kαh

2
Vα + 1

4

∑
β,γ,ε

[3VβV∗γ Vεδα,β−γ+ε + V∗β V∗γ V∗ε δα,−β−γ−ε ] +
6

4
cVα,

(61)

where

c = [(I − nG†G)C] i i (no summation oni)

is a constant (the right-hand side is independent ofi ). Note that the last term comes from the
evaluation of the nonlinear terms by Wick’s theorem. The structure of Eq. (61) is enlighten-
ing. The first two terms on the right-hand side are precisely the Galerkin approximation for
the evolution of a subset of Fourier modes; they constitute a pseudo-spectral approximation
of the equations of motion. The third term, which is linear inV , represents information
gleaned from the prior measure. The nice feature of this example is the sharp separation
between the contribution from the resolved degrees of freedom and the contribution of the
“subgrid” degrees of freedom, which happens to simply “renormalize” the linear part of the
evolution operator.

One is of course interested in knowing how large is the extra term that makes up the
entire difference between the optimal prediction scheme and a standard pseudo-spectral
scheme; this difference is proportional to the coefficientc. In Fig. 7 we plot the value ofc
as function ofN for n= 32. As expected,c is larger when the number of resolved degrees
of freedom is smaller and vanishes whenN= n, i.e., when the system is fully resolved.
The oscillations in this graph result from the alternation between odd and even numbers of
Fourier modes. Figure 7 demonstrates that optimal prediction is consistent. As the number

FIG. 7. The parameterc as a function of the numberN of resolved Fourier modes, forn= 32.
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FIG. 8. Time evolution of the real part of the 4 lowest Fourier modes forn= 32. The circles represent averaged
values over an ensemble of 104 states; the dashed lines result from the Galerkin approximation; the solid lines
result from our optimal prediction scheme (61). Results are presented for (a)N= 4 and (b)N= 8.

of collective variables increases, its predictions converge to those of a resolved calculations
(as indeed should be obvious from the derivation); when the number of collective variables
is small, the corrections due to optimal prediction are substantial.

In Fig. 8 we compare the time evolution of the first 4 Fourier coefficients predicted by our
optimal prediction scheme (61) (solid lines), the time evolution of these modes predicted
by a Galerkin scheme (dashed lines), and their exact mean evolution obtained by sampling
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104 states from the conditional measure, evolving them in time, and averaging the first
Fourier components (circles). We do this withN= 4 andN= 8; with N= 8 we display
only 4 modes even though 8 are calculated, in the interest of clarity. To make the calculations
with different values ofN comparable, we pick the initial values of the collective variables
in the way suggested by the analysis of Hald [12]: We sample an initial functionu from
the invariant measure and then calculate values of the collective variables by performing
the summationsgαi ui . The graph shows that in each case the simple Galerkin calculation
deviates immediately from the true solution, while the optimal prediction remains accurate.
The calculations show that optimal prediction improves the accuracy compared to a Galerkin
calculation; the time during which the optimal prediction remains accurate increases with
increasingN; we know from (61) that the cost of optimal prediction in this problem is small.

8. CONCLUSIONS

We have exhibited the value of the statistical information used in optimal prediction for
the solution of an underresolved nonlinear problem, and we have shown that perturbation
theory provides a ready-made machinery for applying the ideas of optimal prediction to
problems where the invariant measure is non-Gaussian.

The first-order implementation of optimal prediction with a fixed, small, number of
conditions breaks down after a finite time; the time for which it is valid increases as the
temperature increases; the temperature determines the variance of the invariant measure
and thus the uncertainty in the system. There are two ways to improve the prediction: Go
to more sophisticated prediction theory, as outlined in Section 2, or increase the number
of collective variables. We have demonstrated the power of the second alternative; the first
alternative will be explored in later publications.

Many aspects of the algorithms presented here require further work. The closure by
means of a fixed number of affine conditions is only a first step; other closure schemes will
be investigated. In particular, optimal prediction fits within the framework of irreversible
statistical mechanics, whose apparatus can be brought into use for finding closure schemes.
More powerful versions of perturbation theory can be readily used. A careful perusal of
our final example shows that there is a great advantage in using orthogonal kernels; in the
interest of pedagogy, we have not used this possibility in the discussion of perturbation
theory, and we have yet to explore orthogonal bases other than Fourier bases.

An inspection of the formulas derived by perturbation theory shows that though we
assumed a knowledge of an invariant measure, all that is finally used is a set of moments;
this is the opening for applying optimal prediction methods in problems where less than a
full invariant measure is known.

We assume that all these issues will be handled as we progress to more complicated
problems, in more dimensions, with dissipation (requiring a careful modeling of effective
Hamiltonians), and with general boundary conditions. We shall explore problems with these
additional features in future publications.
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